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Abstract—An efficient algorithm is presented for the finite-el-
ement solution of electromagnetic eigenvalue problems associated
with lossy and unbounded structures. The algorithm is based on
the formulation of the finite-element approximation of
the electromagnetic equations. The special relationship between
the vector bases used for the expansion of the electric field vector

and the magnetic flux density vector is used to reduce the
computational complexity of the proposed formulation. The occur-
rence of spurious dc modes is avoided through the careful selection
of divergence-free initial vectors in the Lanczos–Arnoldi-based it-
erative schemes used by the proposed algorithm. The resultant al-
gorithm is only marginally more expensive than standard finite-el-
ement-based algorithms used for electromagnetic eigenvalue prob-
lems involving lossless structures. Numerical experiments from the
application of the proposed algorithm to the eigenvalue analysis of
both lossless and lossy cavities are used to demonstrate its accu-
racy, computational efficiency, and robustness.

Index Terms—Arnoldi algorithm, eigenvalue problems, finite-
element method, Lanczos algorithm, lossy media, unbounded
media.

I. INTRODUCTION

DUE TO ITS superior geometry and material modeling
versatility, the finite-element method (FEM) has become

one of the most dominant numerical methods for the eigen-
analysis of three-dimensional (3-D) lossless inhomogeneous
cavities [1]–[3]. However, its application to lossy electromag-
netic eigenvalue problems, where the loss may be either due to
the finite conductivity of the material or the electromagnetic
energy leakage in the case of unbounded geometries, has not
been as straightforward. The reason for this is that the presence
of loss leads to nonlinear generalized eigenvalue problems.
To address this complication, methodologies based on the
subspace iteration method [4] and the transformation of the
nonlinear problems to the linear ones [5] have been proposed.

In this paper, the finite-element formulation of [7] is
proposed as yet another means to address efficiently the afore-
mentioned difficulty. This new formulation is based on the fi-
nite-element discretization of the coupled system of Maxwell’s
curl equations. Yet, its computational efficiency is not hindered
by the fact that both the electric field and the magnetic flux
density are discretized. The reason for this is a special rela-
tionship between the tangentially continuous and the normally
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continuous vector spaces used, respectively, for the discretiza-
tion of and [6] that is exploited to make the computa-
tional complexity of this new formulation equivalent to that of
the conventional finite-element formulation of the vector-wave
equation.

One of the applications of the formulation has been
the model order reduction of discrete approximations of electro-
magnetic boundary value problems for the purpose of compact
macromodeling of electromagnetic devices [8]. Model order re-
duction is closely related to the problem of eigendecomposition
of the governing system of state equations describing the dis-
crete electromagnetic problem. Therefore, it is only reasonable
to consider the application of the formulation to the FEM
eigenanalysis of 3-D electromagnetic problems involving lossy
and/or unbounded structures.

The paper is organized as follows. Sections II–V are devoted
to the mathematical development of the proposed methodology
and the construction of the associated algorithms. Emphasis is
placed on the development of effective means for the removal
of the spurious dc modes, which are known to occur and hinder
numerical convergence and algorithm robustness. Following
the mathematical development, numerical experiments are
presented in Section VI to demonstrate the computational
efficiency of the proposed algorithm and its effectiveness in
eliminating spurious dc modes and, thus, extracting accurately
eigenfrequencies irrespective of their proximity to the trouble-
some regime. The paper concludes with a summary of
the key attributes of the proposed eigenvalue solvers.

II. FINITE-ELEMENT MODEL

For the purpose of interest, the computational domain occu-
pies a region of space, which is source free and, in the general
case, unbounded. Assuming the presence of ohmic loss in the
media, the electric field satisfies the vector Helmholtz equation

(1)

The finite-element approximation of (1) is effected through the
expansion of in terms of tangentially continuous vector basis
functions associated with the elements of a finite-element
grid used to discretize the region, and the subsequent develop-
ment of the weak statement of the above equation in the Galerkin
form through its testing with each of the expansion functions.
The resulting FEM system has the form

(2)
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where is the vector containing the expansion coefficients of
, and the elements of the matrices are given by

(3)

In the above, is the unbounded portion of the boundary
of . Grid truncation is effected through the enforcement of
a first-order radiation boundary condition, which is physically
described in terms of the imposition of a surface impedance
on of value equal to the intrinsic impedanceof the un-
bounded portion of the region.

For the lossless case, thematrix is zero and (3) reduces
to a linear generalized eigenvalue problem that can be solved
directly using the Lanzcos or Arnoldi algorithms. In the gen-
eral case of a lossy and/or unbounded region, (2) is a nonlinear
eigenvalue problem.

For the case of the formulation [7], both Maxwell’s
curl equations

(4)

are discretized. Due to the boundary condition properties of
and , is expanded in terms of tangentially continuous vector
basis functions , while is expanded in terms of normally
continuous vector basis functions [6]. The weak statement
is obtained by testing the two equations using and , re-
spectively. The resulting FEM system assumes the form

(5)

In the above equations, and are the vectors containing
the expansion coefficients for and , respectively, and
are the matrices appearing in (3), and the elements of the new
matrices and are given by

(6)

In compact form, (5) is written as follows:

(7)

where . Clearly, the resulting matrix eigenvalue
problem is linear; hence, this formulation is most suitable for
the development of the eigensolver for the general case of lossy
media.

III. A LGORITHM FOR LOSSLESSMEDIA

The lossless case is considered first. From (2), the FEM eigen-
value equation assumes the simple form . Krylov
subspace eigenvalue algorithms such as Lanczos or Arnoldi are

very successful in capturing the dominant poles with very good
accuracy well before the generation of the entire Krylov space.
However, the dominant eigenvalues found by these algorithms
are usually the ones with the largest magnitude, while the de-
sired ones for electromagnetic cavities are the ones associated
with the low-frequency modes. Therefore, the spectral transfor-
mation [9]

(8)

where and is used to map the
eigenvalues of interest (close to the expansion point) to those
with largest magnitude, while the corresponding eigenvectors
remain unchanged.

The main procedure of a Krylov subspace method is the re-
cursive construction of the orthonormal Krylov subspace

(9)

where is an initial vector. Proper selection of the initial vector
is important to ensure convergence and is discussed in Section V.
The recursive process used for the construction can be written
in matrix form as follows:

(10)

where , and is a square matrix.
When and are symmetric, it is easily seen thatis sym-

metric with respect to the inner product . Thus,
the Lanczos algorithm can be used with the benefit of shorter re-
currences. In this case, is an by tridiagonal matrix with
entries determined by the following recurrence relation:

(11)

where

(12)

Let denote an eigenpair of , i.e., and
. It is then

(13)

Upon convergence, the calculated eigenpair is . Thus,
a stopping criterion for the algorithm can be the following:

(14)

where defines the desired accuracy.
Although the Lanczos process has shorter recurrence than the

Arnoldi algorithm, it suffers from loss of orthogonality. Typi-
cally, such loss of orthogonality in the bases of the generated
Krylov subspace occurs when the number of iterations is large.
As will be shown in the numerical results section, loss of or-
thogonality leads to erroneous eigenvalues and, thus, needs to
be avoided. Toward this objective, several enhancements of the
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standard Lanczos algorithm have been proposed over the past
few years [11]. These enhancements come at the cost of in-
creased algorithmic complexity.

Loss of orthogonality is not the case for the Arnoldi process.
Although its recurrence is computationally more expensive than
that of Lanczos, the compensating effect of its fast convergence,
combined with its algorithmic simplicity, make it very attractive
as an alternative to the Lanczos process. Furthermore, symmetry
is not required when the Arnoldi process is used. Thus, the inner
product is taken in the usual manner, i.e., . In
the Arnoldi process, the matrix is an upper Hessen-
berg matrix with entries obtained through the following recur-
sive equation:

(15)

where

(16)

Similar to Lanczos, the eigenpairs of (2) are determined from
those of . Equation (14) is still used to monitor convergence.

The extension of the aforementioned algorithms to block al-
gorithms for the calculation of multiple eigenvalues is rather
straightforward. Furthermore, the deflation technique [3] can be
used. Deflation takes advantage of the orthogonality of two dif-
ferent eigenvectors and

(17)

to remove those eigenvectors that have already converged during
the application of the Lanczos–Arnoldi process for the calcula-
tion of the next eigenvector [3]. This is effected by means of the
following operation:

(18)

Theoretically, this operation needs to be done once for the
initial vector. However, because of roundoff error, its appli-
cation for each and every Lanczos–Arnoldi vector is strongly
recommended.

For electromagnetic eigenvalue problems involving lossless
media, either the Lanczos or the Arnoldi process can be applied
to the matrix statement of the discrete problem obtained through
the formulation. For our purposes, and for the reasons men-
tioned above, the Arnoldi process is used exclusively. The cost
of the numerical computation is dominated by the solution of the
matrix equation at each iteration. Depending on the
size of the problem, the solution is obtained either through LU
factorization or through the application of an iterative solver.

IV. A LGORITHM FOR LOSSYMEDIA

When loss is present, either in the form of loss in the media or
radiation loss, the formulation (5) is used instead. Once
again, a spectral transformation is used to improve convergence.

Hence, the matrix statement of the discrete eigenvalue problem
becomes

(19)

where and

(20)

Compared with the matrix obtained from theformulation, the
dimension of the resulting matrix is almost doubled; hence, at
first appearance, the computational cost of the eigenanalysis of
lossy electromagnetic problems is significantly higher than that
for lossless ones. However, an algorithm is presented below that
enables the solution of (19) at a cost only marginally higher than
that for the lossless case.

Consider the generation of the next Arnoldi vector as
follows:

(21)

The main computation is the matrix–vector product

(22)

With the vectors and split into their electric field and mag-
netic flux density parts

(23)

One has

(24)

The resulting matrix equation can be split into two equations.
The first equation concerns the calculation of the expansion co-
efficients for

(25)

Subsequently, the expansion coefficients forare calculated
from the second equation

(26)

At this point, it is appropriate to discuss briefly the rela-
tionship between tangentially and normally continuous vector
spaces. Recall that the curl of the tangentially continuous vector
space is a subset of the normally continuous vector space [6],
i.e., . Hence, a linear matrix relationship exists
between the basis functions of and as follows:

(27)

Due to the bilinear form of the FEM matrices, it is straightfor-
ward to show that

(28)
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In view of the above results, it is apparent that, in the applica-
tion of (25) and (26), the matrix is already available
from the FEM approximation of the vector Helmholtz equation
for the electric field.

, which is called the circulation matrix [12], does not need
to be calculated explicitly. To explain, this matrix relates field to
flux. The product of a vector with this matrix is effected through
a localized operation, namely, by summing up the three edge
expansion coefficients associated with a facet for each facet in
the computational domain.

Thus, the final issue to be addressed is how to avoid the gen-
eration of the matrix . Toward this objective, the following
transformation is introduced for bothand :

(29)

In view of the above transformation, the update of the next
Arnoldi vector is performed as follows:

(30)

To summarize, the application of the Arnoldi process to (19)
does not require the construction of any matrices other than the
ones associated with the finite-element approximation of the
vector Helmholtz equation for the electric field. Furthermore,
due to the splitting of the generated Arnoldi vectors into their
electric field and magnetic flux density parts and the updating
process of (30), the computational complexity of the resulting
modified algorithm is only slightly higher than that for the loss-
less case. From the point-of-view of memory requirements, the
auxiliary vectors have to be stored in addition to the Arnoldi
vectors ( ). However, due to the fast convergence of the
Arnoldi algorithm, the associate memory overhead is not sig-
nificant since only a small number of vectors are generated.

The robustness of the Arnoldi process can be improved fur-
ther by balancing the magnitudes of the electric field part
and the magnetic flux density part of the Arnoldi vectors.
The magnetic flux density is multiplied by and the general-
ized eigenvalue problem assumes the form

(31)

Consequently, the update equations for the generation of the
Arnoldi vector become

(32)

Finally, it is pointed out that, in the presence of loss, the lack of
orthogonality between different eigenmodes necessitates the use
of a block algorithm for the simultaneous calculation of several
eigenmodes.

A pseudocode description of the resulting algorithm is as
follows.

1. Select initial vector ; set ,
;

2. ;
3. ; // calculate , ,

using (32)
3.a. Calculate ;
3.b. Remove dc modes in ;
3.c. Calculate and .

4. Update and calculate using (15)
and (16);

5. Calculate all the eigenpairs of
;

6. For each eigenpair , estimate
residual using (14);

7. If the residual of an eigenpair
is smaller than , output and
stop; else and go to 3.

The difference between the algorithms for lossy and lossless
media lies in the way the Arnoldi vector is updated in step 3.
As already mentioned, the selection of the initial vector re-
quires care. Also, spurious dc modes need to be removed during
the iteration process (step 3.b). These two important issues are
considered below.

V. ELIMINATION OF DC MODES

Even though the use of a tangentially continuous vector space
instead of a scalar space for the expansion ofcan eliminate
spurious ac modes, it introduces spurious dc modes [3]. This is
due to the fact that the tangentially continuous vector space
contains the gradient of the scalar space[6]. Thus, there exists
a matrix such that

(33)

where is the gradient matrix defined in [10]. From the def-
inition of the matrices and and their bilinear forms, it is
straightforward to deduce the following results:

(34)

In view of the second of the above equations and the ma-
trix eigenvalue statement (2) for the case of lossless media
where , it is immediately evident that contains
all the dc modes. Unless these dc modes are eliminated, the
Lanczos–Arnoldi process produces a large amount of eigen-
values with magnitude several orders less than the desired ones.
The presence of these dc modes slows down convergence and
wastes memory.
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Since the dc modes do not satisfy the divergence-free con-
dition at , they can be eliminated through the impo-
sition of the divergence-free requirement on every generated
Lanczos–Arnoldi vector. In the ideal case of zero roundoff error,
the divergence-free condition need only be imposed on the ini-
tial vectors. Such a divergence-free initial vector can be chosen
to be the electric field induced by a loop current source. How-
ever, roundoff error is unavoidable; thus, the selection of diver-
gence-free initial vectors alone is not sufficient to guarantee re-
moval of the spurious dc modes. The error due to the presence
of these modes is most severe when the expansion frequency
assumes low values.

To address this difficulty, the technique suggested in [3] can
be used. The basic idea is to add to the electric-field vector,
a vector , where is a vector to be determined such
that the spurious dc modes are canceled. The new vector

(35)

then satisfies the divergence-free condition at dc ( ).
In matrix form, this becomes

(36)

where is the finite-element matrix for the corresponding elec-
trostatic problem

(37)

with and being scalar basis functions. The aforemen-
tioned vector is the solution to this electrostatic problem.
Once found, (35) is used to eliminate the spurious dc modes.

For the case of lossy media, not every column vector in
corresponds to a spurious dc mode of the matrix eigenvalue
problem. This is evident from the product of with the
matrix in (31). Use of the results in (34) yields

(38)

Consequently, the dc modes are those column vectors offor
which the multiplication with the matrix yields the null vector.
To elaborate, each column vector in corresponds to a node in
the computational domain. Furthermore, the nonzero entries in
the column vector correspond to an edge connected to the node.
Thus, the spurious dc modes are associated with those nodes
that are neither inside the portion of the computational domain
that contains the lossy media, nor on the surface of an absorbing
boundary. Therefore, the correction through the electrostatic so-
lution of (36) is only performed in the lossless region.

In summary, the spurious dc modes can be eliminated by
keeping the generated Lanczos–Arnoldi vectors divergence
free. This is achieved by first making sure that the initial

Fig. 1. Eigenfrequencies of a parallel-plate waveguide with a lossy dielectric
block in the middle. The top plot indicates the eiegenfrequencies. In the bottom
plot, the associated residuals are indicated.

vectors are divergence free. For this purpose, the fields gen-
erated by closed electric-current loops are used as initial vec-
tors. In addition, during the Lanczos–Arnoldi process, the so-
lution of (36) is utilized through the correction operation of
(35) in order to ensure the elimination from the constructed
Lanczos–Arnoldi vectors of any spurious dc modes that may
be introduced because of roundoff error. For the case of lossy
media, and are only constructed for the nodes in the
computational domain exclusive of the lossy media and ab-
sorbing boundary.

VI. A PPLICATIONS

In the following, the proposed methodologies and algorithms
are implemented for the solution of electromagnetic eigenvalue
problems associated with both lossless and lossy media. All cal-
culations are performed on a Pentium III 600-MHz PC with
double precision arithmetic. The tolerance is set to .

The first example is the parallel-plate waveguide with a lossy
dielectric block in the center, as shown in the insert of Fig. 1.
The cross section is square of side 0.1 m. The top and bottom
plates are perfectly conducting. The side walls are assumed to
be perfect magnetic walls. The two ports are terminated by per-
fect conductors. The relative dielectric constant of the dielectric
block is 2.0 and its conductivity is 0.1 S/m. The for-
mulation is generated explicitly, and is exported to MATLAB
to perform the complete eigenvalue analysis for reference. The
block Arnoldi algorithm described in Section IV with spurious
dc-mode removal is also used for the calculation of the three
dominant modes. The expansion frequency point is taken to be

MHz. After 11 iterations, the calculated eigenfrequen-
cies with residual less than are plotted in the top plot
in Fig. 1. The corresponding residuals are shown in the bottom
plot. Clearly, the eigenfrequencies close to the expansion point
are calculated first. Furthermore, the zero eigenfrequencies are
successfully avoided.
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Fig. 2. Convergence of the five dominant modes of a partially filled PEC
cylindrical cavity of circular cross section. The top plot is for the case of
lossless dielectric filling. The bottom plot is for the case of lossy dielectric
filling. In both cases, a block Arnoldi algorithm is used.

TABLE I
LOWESTEIGENFREQUENCIES OFPARTIALLY FILLED LOSSLESSCYLINDRICAL

CAVITY OBTAINED USING A BLOCK ARNOLDI PROCESS

The second example is a circular cylindrical cavity, partially
filled with a dielectric rod of relative permittivity .
The cavity walls are assumed to be perfect electric conductors
(PECs). The geometry is shown in the insert of Fig. 2. The av-
erage grid size in the FEM mesh is 2.0 mm, and the number of
degrees of freedom is 5748. The objective is to extract the five
lowest eigenmodes. Thus, the expansion frequency is taken to
be GHz.

First, the dielectric rod is assumed to be lossless. The block
Arnoldi algorithm is used to capture the first five dominant
modes. The calculated resonant frequencies of the seven lowest
eigenmodes are compared to their analytical ones in Table I. The
solution required nine iterations for the five modes to converge.
The total CPU time was 61.8 s. No spurious dc modes were
generated. Furthermore, every calculated mode corresponds to
an analytical one, indicating that no spurious ac modes occur
either. The top plot in Fig. 2 depicts the convergence behavior
in the calculation of the first five eigenfrequencies. The first
(lowest) eigenfrequency converges much faster, while the

TABLE II
LOWESTEIGENFREQUENCIES OFPARTIALLY FILLED LOSSLESSCYLINDRICAL

CAVITY OBTAINED USING A BLOCK LANCZOS PROCESS

TABLE III
EIGENFREQUENCIES OF THELOWESTMODES OF APARTIALLY FILLED LOSSY

CYLINDRICAL CAVITY OBTAINED USING A BLOCK ARNOLDI PROCESS

Fig. 3. Convergence of the dominant mode of a half-filled resonator for various
values of the conductivity of the filling dielectric.

other four exhibit a slightly slower convergence, requiring nine
iterations to reach the tolerance threshold.

Since the structure is lossless, the block Lanczos algorithm
may also be used. In order to demonstrate the impact on loss of
orthogonality in the Lanczos process on the calculated eigen-
vectors, the algorithm was applied for the calculation of the first
few lowest eigenfrequencies of the cylindrical cavity.

The seven lowest eigenfrequencies obtained after nine
iterations are listed in Table II. The occurrence of two spurious
modes is attributed to the loss of orthogonality in the Lanczos
process. Also, compared with the Arnoldi algorithm, the
Lanczos process exhibited slower convergence.

For the case where the dielectric rod inside the cylindrical
cavity is lossy, the FEM eigenvalues are obtained using the
block Arnoldi technique. For the specific application, the
conductivity of the rod was taken to be S/m. Once
again, the five lowest eigenmodes are of interest; thus, the
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TABLE IV
EIGENFREQUENCY OF THEDOMINANT MODE OF A

PARTIALLY FILLED RECTANGULAR RESONATOR

expansion frequency was taken to be GHz. Con-
vergence for all five modes was achieved after 14 iterations.
The total CPU time was 73 s. The calculated eigenfrequen-
cies are shown in Table III. Their convergence is depicted
in the bottom plot of Fig. 2. In order to examine the depen-
dence of the convergence behavior of the algorithm as the
expansion frequency point changes, the same problem was
solved by setting GHz. This time, the number
of required iterations for convergence of the five lowest
eigenfrequencies was 16. However, the same eigenfrequen-
cies were obtained.

As a final example, the half-filled rectangular resonator
shown in the insert of Fig. 3 was analyzed. The base is
square of a side of 22.86 mm, while the height is 10.16 mm.
The average grid size of the FEM mesh is 2.49 mm, and
the number of unknowns is 2734. The calculated dominant
eigenfrequency (in gigahertz) for different values of the con-
ductivity of the dielectric is compared to its analytical value
in Table IV. Also, Fig. 3 depicts the impact of loss on
convergence.

VII. CONCLUSIONS

In conclusion, in this paper, efficient and reliable algo-
rithms have been proposed and validated for an FEM-based
solution of electromagnetic eigenvalue problems involving
both lossless and lossy media. For lossy media in particular,
the proposed FEM model is based on the discretization of
the system of Maxwell’s curl equations. The major attribute
of this formulation, referred to as the formulation, is
that the resulting discrete eigenvalue problem is linear. The
apparent increased computational complexity due to the in-
crease in the number of degrees of freedom (since both
and are discretized) is avoided by taking advantage of a
special relationship between the spaces used for the expan-
sions of the two fields and by means of a modification of
the Lanczos or Arnoldi algorithm used for the extraction of
a subset of the dominant eigenvalues. From the two algo-
rithms, the Arnoldi process was found to be the most robust
and algorithmically simple.

While the FEM formulations used are free of spurious ac
modes, the occurrence of spurious dc modes (i.e., modes that
exhibit nonzero divergence) is possible and must be avoided

since it slows convergence and impacts accuracy. The pro-
posed methodology for their avoidance is based on the selec-
tion of divergence-free initial vectors and the explicit elim-
ination from the generated Lanczos–Arnoldi vectors of any
spurious dc parts caused by roundoff error through the in-
troduction of appropriate static fields in the lossless por-
tions of the computational domain. The validity, computa-
tional efficiency, accuracy, and robustness of the proposed
algorithms were demonstrated through a series of numerical
experiments. Finally, it is mentioned that the algorithms pro-
posed in this paper can also be used in conjunction with
high-order finite-element approximations.
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