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Robust Finite-Element Solution of Lossy
and Unbounded Electromagnetic
Eigenvalue Problems
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Abstract—An efficient algorithm is presented for the finite-el- continuous vector spaces used, respectively, for the discretiza-
ement solution of electromagnetic eigenvalue prqblems associatedtion of £ and B [6] that is exploited to make the computa-
with lossy and unbounded structures. The algorithm is based on ona| complexity of this new formulation equivalent to that of

the E — B formulation of the finite-element approximation of . .. .
the electromagnetic equations. The special relationship betweenthe conventional finite-element formulation of the vector-wave

the vector bases used for the expansion of the electric field vector €quation. L

E and the magnetic flux density vectorB is used to reduce the ~ One of the applications of the — 5 formulation has been
computational complexity of the proposed formulation. The occur-  the model order reduction of discrete approximations of electro-
rence of spurious dc modes is avoided through the careful selection magnetic boundary value problems for the purpose of compact

of divergence-free initial vectors in the Lanczos—Arnoldi-based it- macromodeling of electromagnetic devices [8]. Model order re-
erative schemes used by the proposed algorithm. The resultant al-

gorithm is only marginally more expensive than standard finite-el- duction is closely related to the problem of eigendecomposition
ement-based algorithms used for electromagnetic eigenvalue prob- Of the governing system of state equations describing the dis-
lems involving lossless structures. Numerical experiments from the crete electromagnetic problem. Therefore, it is only reasonable
application of the proposed algorithm to the eigenvalue analysis of tg consider the application of tHé— B formulation to the FEM
both lossless and lossy cavities are used to demonstrate its accuéigenanalysis of 3-D electromagnetic problems involving lossy
racy, computational efficiency, and robustness.
and/or unbounded structures.
Index Terms—Amoldi algorithm, eigenvalue problems, finite-  The paper is organized as follows. Sections 11—V are devoted
ﬁ!gg}gm method, Lanczos algorithm, lossy media, unbounded y yhe mathematical development of the proposed methodology
' and the construction of the associated algorithms. Emphasis is
placed on the development of effective means for the removal
I. INTRODUCTION of the spurious dc modes, which are known to occur and hinder

UE TO ITS superior geometry and material mode”n%umerical convergence and algorithm r_obustness.. Following
versatility, the finite-element method (FEM) has becomi'® Mathematical development, numerical experiments are
one of the most dominant numerical methods for the eigeRf€Sented in Section VI to demonstrate the computational
analysis of three-dimensional (3-D) lossless inhomogenedtficiency of the proposed algorithm and its effectiveness in
cavities [1]-[3]. However, its application to lossy electromagf!iMinating spurious dc modes and, thus, extracting accurately
netic eigenvalue problems, where the loss may be either duéatgenfrequenmgs irrespective of their prOX|m.|ty to the trouble-
the finite conductivity of the material or the electromagnetif®Me/ ~ 0 regime. The paper concludes with a summary of
energy leakage in the case of unbounded geometries, hastgtkeY attributes of the proposed eigenvalue solvers.
been as straightforward. The reason for this is that the presence
of loss leads to nonlinear generalized eigenvalue problems.
To address this complication, methodologies based on theFor the purpose of interest, the computational domain occu-
subspace iteration method [4] and the transformation of th&s a region of spade, which is source free and, in the general
nonlinear problemsﬁto thﬁe linear ones [5] have been proposedase, unbounded. Assuming the presence of ohmic loss in the
In this paper, the — B finite-element formulation of [7] is media, the electric field satisfies the vector Helmholtz equation
proposed as yet another means to address efficiently the afore- 1
mentioned difficulty. This new formulation is based on the fi- V X =V X E+ jwrE — w*E = 0. 1)
nite-element discretization of the coupled system of Maxwell’s H
curl equations. Yet, its computational efficiency is not hinderebhe finite-element approximation of (1) is effected through the
by the fact that both the electric fielf and the magnetic flux expansion oft in terms of tangentially continuous vector basis
density]§ are discretized. The reason for this is a special reliunctionsw, associated with the elements of a finite-element
tionship between the tangentially continuous and the normadlyid used to discretize the region, and the subsequent develop-
ment of the weak statement of the above equation in the Galerkin
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wherez, is the vector containing the expansion coefficients ofery successful in capturing the dominant poles with very good

E, and the elements of the matric€sZ, T are given by accuracy well before the generation of the entire Krylov space.
1 However, the dominant eigenvalues found by these algorithms
Si5 = / V x ;- =V x i dv are usually the ones with the largest magnitude, while the de-
§2 H sired ones for electromagnetic cavities are the ones associated
T ;= / ;- ey du with the low-frequency modes. Therefore, the spectral transfor-
Q . mation [9]
Fid = 7291 X En Xy ds +/Q oy de. () Sze =w*Tz. — Az, = %xe 8)

In the aboveg€?; is the unbounded portion of the boundar

— 2,2 _ 2 —1g;
of €. Grid truncation is effected through the enforcement % ihirn?/imé of iﬁ?e?gg;é(lcﬂ)ég to ;?]Oggx ;Z:ﬁ%ﬁt?;g;ge
a first-order radiation boundary condition, which is physicall g P

described in terms of the imposition of a surface impedan}c{\’éth largest magnitude, while the corresponding eigenvectors

on 992, of value equal to the intrinsic impedangeof the un- remain un_changed. .
) . The main procedure of a Krylov subspace method is the re-
bounded portion of the region.

For the lossless case, ti matrix is zero and (3) reducesCUrsive construction of the orthonormal Krylov subspace
to a linear generalized eigenvalue problem that can be solvegl;. (o Avg, ..., A2 ) =(vo, vy, ..., v" D)=V, (9)

directly using the Lanzcos or Arnoldi algorithms. In the gen-
eral case of a lossy and/or unbounded region, (2) is a nonlingdrereu is an initial vector. Proper selection of the initial vector

eigenvalue problem. is important to ensure convergence and is discussed in Section V.
For the case of thé& — B formulation [7], both Maxwell's The recursive process used for the construction can be written
curl equations in matrix form as follows:
V x E =—jwB AV, = Vo Hy 4 Gpyrel (10)
VX (B/ “) =jweb +ok (4) whereel = (0, ..., 0, 1)1 4, andH,, is an x n square matrix.

WhenS and?” are symmetric, it is easily seen thatis sym-

are discretized. Due to the boundary condition propertieé of metric with respect to the inner produat, 4) = «Ty. Thus

andB, L'is gxpalnded interms of tangentially continuous VeCtQfe | anczos algorithm can be used with the benefit of shorter re-
basis functionsy;, while B is expanded in terms of normally o\, rences. In this casél,, is ann by » tridiagonal matrix with
continuous vector basis functioms, [6]. The weak statement gnies determined by the following recurrence relation:

is obtained by testing the two equations using and;, re-

spectively. The resulting FEM system assumes the form Vg1 = Av; — hi1 w1 — hy 0 (11)
0 iD | |z P 0|z where
ot izl | %0 7||a | ©
J J ¢ ¢ hi—1,: ={vi_1, Av;)

In the above equations;. andx, are the vectors containing hi i = (v, Av;)
the expansion coefficients fdr and B, respectivelyZ and7’

. > hiv1,i = ||Visr ]
are the matrices appearing in (3), and the elements of the new

matricesD and P are given by Vil = Viv/hita,i- (12)
. 1 . Let (s, A) denote an eigenpair df,,, i.e., H,s = As and
Dm—/ Wn,i+ — V X Wy, j dv r = V,s. Itis then
Q H
P = / Foi - L do. ©) Az — Ao = AVps — Vo Hyps = (¢X8)0ny1.  (13)
7 o B

Upon convergence, the calculated eigenpaiffiss, A). Thus,

In compact form, (5) is written as follows: ) o ) .
b ©) a stopping criterion for the algorithm can be the following:
G—wCz=0 7 -
(G~ w0) @) Az = dall _ ()13
wherex = (2], 27)T. Clearly, the resulting matrix eigenvalue | Az || AV, s]]
problem is linear; hence, this formulation is most suitable f
the development of the eigensolver for the general case of |

media.

<p (14)

%herep defines the desired accuracy.

ossyﬁ\lthough the Lanczos process has shorter recurrence than the
Arnoldi algorithm, it suffers from loss of orthogonality. Typi-
cally, such loss of orthogonality in the bases of the generated
Krylov subspace occurs when the number of iterations is large.
The lossless case is considered first. From (2), the FEM eigeéks will be shown in the numerical results section, loss of or-

value equation assumes the simple f&#fm = «?Tz.. Krylov  thogonality leads to erroneous eigenvalues and, thus, needs to

subspace eigenvalue algorithms such as Lanczos or Arnoldi besavoided. Toward this objective, several enhancements of the

I1l. ALGORITHM FORLOSSLESSMEDIA
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standard Lanczos algorithm have been proposed over the péshce, the matrix statement of the discrete eigenvalue problem
few years [11]. These enhancements come at the cost of liecomes
creased algorithmic complexity. 1

Loss of orthogonality is not the case for the Arnoldi process. (G-wCz =0 — Az = i (19)
Although its recurrence is computationally more expensive than
that of Lanczos, the compensating effect of its fast convergenk’:\@,er
combined with its algorithmic simplicity, make it very attractive A=(G—wC)"'C. (20)
as an alternative to the Lanczos process. Furthermore, symmetry .
is not required when the Arnoldi process is used. Thus, the infeompared with the matrix obtained from thformulation, the
product is taken in the usual manner, i, ¥) = zfy. In dimension of the resulting matrix is almost doubled; hence, at
the Arnoldi process, the matril{,, is ann x n upper Hessen- first appearance, the computational cost of the eigenanalysis of
berg matrix with entries obtained through the following recutessy electromagnetic problems is significantly higher than that

ed = w — wg and

sive equation: for lossless ones. However, an algorithm is presented below that
enables the solution of (19) at a cost only marginally higher than
Vip1 = Av; — hi v; — hi_1 ivi—1 -+~ —ho, ivo (15)  that for the lossless case.
Consider the generation of the next Arnoldi vectqr, as
where follows:

hj.i = (vj, Avi)
j=ii—1,...,0

Uig1 = Avg — by v — hi_1 ivi—1 - - —ho, ivo. (21)

. The main computation is the matrix—vector product
hiv1,i = ||Vir ]

Vig1 = Vig1/hiy1,ix. (16) Av; = (G — woC) ™' Cu; = p. (22)

Similar to Lanczos, the eigenpairs of (2) are determined frof{ith the vectorg andw; split into their electric field and mag-
those ofH,,. Equation (14) is still used to monitor convergencdl€tic flux density parts

The extension of the aforementioned algorithms to block al-
. . . . . _ | P _ |
gorithms for the calculation of multiple eigenvalues is rather p= [p } vy = [U } . (23)
straightforward. Furthermore, the deflation technique [3] can be ¢ ¢
used. Deflation takes advantage of the orthogonality of two diPne has
ferent eigenvectors. ; andz. ; —woP iD » Pui,
xe,isxe,j = xe,iTxe,j =0, 7 7& J a7 —jD JZ —woT | | pe Tvi, e

. . 24
to remove those eigenvectors that have already converged during (24)

the application of the Lanczos—Arnoldi process for the calcul@he resulting matrix equation can be split into two equations.
tion of the next eigenvector [3]. This is effected by means of thghe first equation concerns the calculation of the expansion co-
following operation: efficients for &

Hps T p—1 . 2 _ T
x) T4 . (18) (D P D+ jwoZ — wOT)pe = —jD vy +woTw; .
i (25)

Theoretically, this operation needs to be done once for taghsequently, the expansion coefficients Brare calculated
initial vector. However, because of roundoff error, its appligom the second equation

cation for each and every Lanczos—Arnoldi vector is strongly
recommended.

For electromagnetic eigenvalue problems involving lossless
media, either the Lanczos or the Arnoldi process can be appliedat this point, it is appropriate to discuss briefly the rela-
to the matrix statement of the discrete problem obtained throughship between tangentially and normally continuous vector
the £ formulation. For our purposes, and for the reasons megpaces. Recall that the curl of the tangentially continuous vector
tioned above, the Arnoldi process is used exclusively. The c@gface is a subset of the normally continuous vector space [6],
of the numerical computation is dominated by the solution of the | v x W, c W,,. Hence, a linear matrix relationship exists

matrix equatior(S — w3T’) at each iteration. Depending on theyetween the basis functions Bf, and W, as follows:
size of the problem, the solution is obtained either through LU

factorization or through the application of an iterative solver. [V X @, ..., V X @n,] = [Wa1, - -, Wan, | Y, xn, -
(27)

Vigl — Uiyl —

1 . 1
py = — jP1Dp. — — v ». (26)
Wo Wo

2

V. ALGORITHM FORLOSSYMEDIA N ) o )
) ) ) ) . Due to the bilinear form of the FEM matrices, it is straightfor-
When loss is present, either in the form of loss in the media @k, to show that

radiation loss, théZ — B formulation (5) is used instead. Once
again, a spectral transformation is used to improve convergence. D'p~'D=5s P'D=Y. (28)
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In view of the above results, it is apparent that, in the applic&inally, it is pointed out that, in the presence of loss, the lack of
tion of (25) and (26), the matri®? P~1 D is already available orthogonality between different eigenmodes necessitates the use
from the FEM approximation of the vector Helmholtz equatioof a block algorithm for the simultaneous calculation of several
for the electric field. eigenmodes.

Y, which is called the circulation matrix [12], does not need A pseudocode description of the resulting algorithm is as
to be calculated explicitly. To explain, this matrix relates field téollows.
flux. The product of a vector with this matrix is effected through
a Iocali_zed oper_a.tion, namely, by sgmming up the three edg_e Select initial vector vo.. set oy — O,
expansion coefficients associated with a facet for each facet in, : :
the computational domain. 0.6

b — 0

N . . 2. ¢ 0;
Thus, the final issue to be addressed is how to avoid the gen- L Av: J/
; - . L . . — Ui calculate Per  Puby Do
eration of the matrixD. Toward this objective, the following using (32)
transformation is introduced for bothandw;: 3a Calculate Do
D iP 1D 0] [py 3.b. Remove dc modes in  p;
= 3.c. Calculate pey and p,.
Pe 0 I pe 4. Update H and calculate v;41 Using (15)
Vi,b JPID 0| | viw and (16);
vie| 0 ]| (2 5.;alculate all the eigenpairs (s, A) of
In view of the above transformation, the update of the ne@t For each eigenpair (s, A), estimate
Arnoldi vector is performed as follows: residual using (14);
7. If the residual of an eigenpair (s, A)
(S + jwoZ — WT)pe =Sv;, 4, + woTv; e is smaller than p, output  (V.s, A) and
1 stop; else t—i+1 and go to 3.
Pu =— (Pe - Ui,bb)
wo
o =j¥pus. (30)  The difference between the algorithms for lossy and lossless

To summarize, the application of the Arnoldi process to (1 edia lies in the way the Arnoldi vector is updated in step 3.

does not require the construction of any matrices other than fhe&lready mentioned, the selection of the initial veetpe re-
ones associated with the finite-element approximation of tH&Ires care. Also, spurious dc modes need to be removed during
vector Helmholtz equation for the electric field. Furthermordh€ itération process (step 3.b). These two important issues are
due to the splitting of the generated Arnoldi vectors into thefPSidered below.

electric field and magnetic flux density parts and the updating

process of (30), the computational complexity of the resulting V. ELIMINATION OF DC MODES

modified algorithm is only slightly higher than that for the loss- Even though the use of a tangentially continuous vector space
less case. From the point-of-view of memory requirements, thgstead of a scalar space for the expansiofafan eliminate
auxiliary vectors/y, have to be stored in addition to the Arnoldispurious ac modes, it introduces spurious dc modes [3]. This is
vectors {3, V). However, due to the fast convergence of thgue to the fact that the tangentially continuous vector spéice

Arnoldi algorithm, the associate memory overhead is not sigontains the gradient of the scalar sp@dJé]. Thus, there exists
nificant since only a small number of vectors are generated. 3 matrixG,. such that

The robustness of the Arnoldi process can be improved fur-
ther by balancing the magnitudes of the electric field part Ve =W,G, — [Vér, ..., Vén ]

and the magnetic flux density part of the Arnoldi vectors. =[we,1, -y we, N Grny e (33)
The magnetic flux density is multiplied ky, and the general- ’ o B
ized eigenvalue problem assumes the form whereG,. is the gradient matrix defined in [10]. From the def-
, inition of the matricesS and D and their bilinear forms, it is
0 3D r - .
woxy — 0 [woxy straightforward to deduce the following results:
3DT i . =w | wo . . (31
wo “T’_/ 0 T AT,_/ GTS=0 SG,=0 DG, =0. (34)
G C

) ) In view of the second of the above equations and the ma-
Consequently, the update equations for the generation of {i¢ eigenvalue statement (2) for the case of lossless media
Arnoldi vector become where Z = 0, it is immediately evident tha&, contains
all the dc modes. Unless these dc modes are eliminated, the
Lanczos—Arnoldi process produces a large amount of eigen-
Vi, bb values with magnitude several orders less than the desired ones.
wo The presence of these dc modes slows down convergence and
o =3Y Py (32) wastes memory.

1
(5 + jwoZ — wiT)pe = o Sv;, by + wol s, e
0

Dbp = Pe —
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Since the dc modes do not satisfy the divergence-free cc _+

2335

dition atw = 0, they can be eliminated through the impoéa
sition of the divergence-free requirement on every generat E‘_?z_
Lanczos—Arnoldivector. In the ideal case of zero roundoff errc &
the divergence-free condition need only be imposed on the i .g
tial vectors. Such a divergence-free initial vector can be chos =°[

10°
! "o ! T T
L0m. °

- matlab result
© proposed method

to be the electric field induced by a loop current source. Hov
ever, roundoff error is unavoidable; thus, the selection of dive

4

I I I
-0.2 0 0.2
real part of eigenvalues

L L L
0.4 0.6 0.8

x10

10

gence-free initial vectors alone is not sufficient to guarantee r§
moval of the spurious dc modes. The error due to the presers
of these modes is most severe when the expansion frequgncy
assumes low values. ,

To address this difficulty, the technique suggested in [3] ces

3

f e

2

1

aginary part of

ol®

& 1,56e-6

® 6028

® 450e-8
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228e-15
[c]

- matlab result
O proposed method
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be used. The basic idea is to add to the electric-field vegtor

L
-0.5 o
real part of eigenvalues

L
0.5

1.5

x 10°

a vectorg. = G,.¥, whereV is a vector to be determined such

that the spurious dc modes are canceled. The new vector Fig. 1. Eigenfrequencies of a parallel-plate waveguide with a lossy dielectric
block in the middle. The top plot indicates the eiegenfrequencies. In the bottom
plot, the associated residuals are indicated.

Pe — pe + G U (35)
then satisfies the divergence-free condition atddc (5 =0).

X , vectors are divergence free. For this purpose, the fields gen-
In matrix form, this becomes

erated by closed electric-current loops are used as initial vec-
tors. In addition, during the Lanczos—Arnoldi process, the so-
lution of (36) is utilized through the correction operation of
(35) in order to ensure the elimination from the constructed
anczos—Arnoldi vectors of any spurious dc modes that may
e introduced because of roundoff error. For the case of lossy
media,&,. and M are only constructed for the nodes in the
computational domain exclusive of the lossy media and ab-
sorbing boundary.

MV = -G*Tp, (36)

. - . . L
wherelM is the finite-element matrix for the corresponding elecé
trostatic problem

Mi,j = / V(/)Z - GV(/)]' dv (37)

2
with ¢; and ¢; being scalar basis functions. The aforemen-
tioned vectorV is the solution to this electrostatic problem.
Once found, (35) is used to eliminate the spurious dc modes. |n the following, the proposed methodologies and algorithms

For the case of lossy media, not every column vecta#in are implemented for the solution of electromagnetic eigenvalue
corresponds to a spurious dc mode of the matrix eigenvalgeblems associated with both lossless and lossy media. All cal-
problem. This is evident from the product[6f GX]* with the culations are performed on a Pentium 1l 600-MHz PC with
matrix G in (31). Use of the results in (34) yields double precision arithmetic. The tolerance is sgi te 1.0 5.

The first example is the parallel-plate waveguide with a lossy
dielectric block in the center, as shown in the insert of Fig. 1.
The cross section is square of side 0.1 m. The top and bottom
plates are perfectly conducting. The side walls are assumed to
be perfect magnetic walls. The two ports are terminated by per-
fect conductors. The relative dielectric constant of the dielectric

which the multiplication with the matrig yields the null vector. PlO¢K is 2.0 and its conductivity is 0.1 S/m. Tlie — 5 for-
To elaborate, each column vectoiGi corresponds to a node inmulation is generated expllcnly, and is exported to MATLAB
the computational domain. Furthermore, the nonzero entriesfhPerform the complete eigenvalue analysis for reference. The
the column vector correspond to an edge connected to the ndJ@ck Arnoldi algorithm described in Section IV with spurious
Thus, the spurious dc modes are associated with those nodfegnode removal is also used for the calculation of the three
that are neither inside the portion of the computational domai#@minant modes. The expansion frequency point is taken to be
that contains the lossy media, nor on the surface of an absorbfing= 200 MHz. After 11 iterations, the calculated eigenfrequen-
boundary. Therefore, the correction through the electrostatic §ées with residual less thahOc~> are plotted in the top plot
lution of (36) is only performed in the lossless region. in Fig. 1. The corresponding residuals are shown in the bottom
In summary, the spurious dc modes can be eliminated pipt. Clearly, the eigenfrequencies close to the expansion point
keeping the generated Lanczos—Arnoldi vectors divergenaxe calculated first. Furthermore, the zero eigenfrequencies are
free. This is achieved by first making sure that the initisduccessfully avoided.

VI. APPLICATIONS

0
DT

wo

0
G,

0 0
0 jZG,

(38)

Iz

Consequently, the dc modes are those column vectars édr
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L T f l . . . TABLE I
e . LOWESTEIGENFREQUENCIES OFPARTIALLY FILLED LOSSLESSCYLINDRICAL
g ; CAVITY OBTAINED USING A BLOCK LANCZOS PROCESS
X 2 -
S SET
; =4 Mode | Analyt. | Numerical | Residual | Spurious
=0 | 1 1498 1500.0 2.265e-06
‘T £ S Mode 1 2 1498 1500.0 | 1.551e-05 Yes
x 2 3 ote2 3 2435 2441.5 | 5.876e-03
<10 1 o Moded 4 2435 2442.4 | 6.631e-04
K ooemm |- * Mode5 5 2435 2442.2 | 1.532e-01 Yes
107 L L L . L L ! 6 2504 2505.1 1.762e-05
! 2 3 4 5 6 7 8 ’ 7 2504 2505.6 | 4.531e-05
Iteration
! ! ! ! ! ! TABLE Il
10° 3\':,@‘:%‘ - E EIGENFREQUENCIES OF THELOWESTMODES OF APARTIALLY FILLED LOSSY
- = CYLINDRICAL CAVITY OBTAINED USING A BLOCK ARNOLDI PROCESS
X
< i
= = i@:-:é{i% =% Mode Calculated Residual
2 . -¢ 1 | 1499.9+j23.86 | 4.550e-18
<1077 Mode | 2 | 2441.4+j23.86 | 4.284e-08
x + Mode2 3 | 2442.3+3j23.82 | 2.929¢-08
< ©- Mode 3 .
= & Mode 4 4 2505.5+3j23.56 | 3.806e~-07
*- Mode 5 5 2505.0+3j23.56 | 7.312e-07
107 1 L 1 ] L |
2 4 6 8 10 12 14

Iteration !

Fig. 2. Convergence of the five dominant modes of a partially filled PEC
cylindrical cavity of circular cross section. The top plot is for the case o 10°
lossless dielectric filling. The bottom plot is for the case of lossy dielectri
filling. In both cases, a block Arnoldi algorithm is used. 10k

10.16mm

0' |-
TABLE |
LOWEST EIGENFREQUENCIES OFPARTIALLY FILLED LOSSLESSCYLINDRICAL

CavITY OBTAINED USING A BLOCK ARNOLDI PROCESS

]
&

A X =Ax | A xl}

Mode | Analyt. | Numerical | Residual | Error 1L i
1 1498 1500.0 | 1.008e-14 | 0.13%
2 2435 2441.5 | 4.149e-08 | 0.27% 0oL e ]
3 2435 2442.4 | 5.704e-08 | 0.31Y% G =055m
4 2504 2505.1 | 9.873e-08 | 0.04% ool | Toonioem ]
5 2504 2505.6 | 2.304e-07 | 0.08Y% ,
6 3029 3045.6 | 8.523e-05 | 0.55Y% 0 ; ‘ ‘ ‘ ‘ . ‘ :
7 3331 3334.4 | 3.163e-04 | 0.10} 0 z 4 e 8 eration 2 “ 1® 8

Fig.3. Convergence of the dominant mode of a half-filled resonator for various

The second example is a circular cylindrical cavity, partially'4es °f the conductivity of the filling dielectric.

filled with a dielectric rod of relative permittivitg,, = 37.6.
The cavity walls are assumed to be perfect electric conductatker four exhibit a slightly slower convergence, requiring nine
(PECs). The geometry is shown in the insert of Fig. 2. The aiterations to reach the tolerance threshold.
erage grid size in the FEM mesh is 2.0 mm, and the number ofSince the structure is lossless, the block Lanczos algorithm
degrees of freedom is 5748. The objective is to extract the fimeay also be used. In order to demonstrate the impact on loss of
lowest eigenmodes. Thus, the expansion frequency is takerotthogonality in the Lanczos process on the calculated eigen-
be fo = 1.2 GHz. vectors, the algorithm was applied for the calculation of the first
First, the dielectric rod is assumed to be lossless. The bldekv lowest eigenfrequencies of the cylindrical cavity.
Arnoldi algorithm is used to capture the first five dominant The seven lowest eigenfrequencies obtained after nine
modes. The calculated resonant frequencies of the seven lovitesations are listed in Table Il. The occurrence of two spurious
eigenmodes are compared to their analytical onesin Table I. Thedes is attributed to the loss of orthogonality in the Lanczos
solution required nine iterations for the five modes to convergarocess. Also, compared with the Arnoldi algorithm, the
The total CPU time was 61.8 s. No spurious dc modes wdranczos process exhibited slower convergence.
generated. Furthermore, every calculated mode corresponds tBor the case where the dielectric rod inside the cylindrical
an analytical one, indicating that no spurious ac modes ocaavity is lossy, the FEM eigenvalues are obtained using the
either. The top plot in Fig. 2 depicts the convergence behavigiock Arnoldi technique. For the specific application, the
in the calculation of the first five eigenfrequencies. The firstonductivity of the rod was taken to he= 0.1 S/m. Once
(lowest) eigenfrequency converges much faster, while thgain, the five lowest eigenmodes are of interest; thus, the
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TABLE IV since it slows convergence and impacts accuracy. The pro-

EIGENFREQUENCY OF THEDOMINANT MODE OF A : : : _

PARTIALLY FILLED RECTANGULAR RESONATOR posed mgthodology for Fh.e.lr avoidance is based on. t.he §elec
tion of divergence-free initial vectors and the explicit elim-

o(S/m) | Analytical | Calculated | Residual ination from the generated Lanczos—Arnoldi vectors of any
0.1 | 7.379+j0.354 | 7.378+j0.353 | 7.934e-07 : e
0.5 | 7.236+j1.819 | 7.236+j1.813 | 4.594e-07 spurlou_s dc parts cau_sed by _rou_ndoff _error through the in
1.0 | 6.579+j3.864 | 6.585+13.852 | 6.756e-07 troduction of appropriate static fields in the lossless por-
1.3 5.711+j5.197 | 5.724+j5.182 | 5.280e-07 tions of the computational domain. The validity, computa-

tional efficiency, accuracy, and robustness of the proposed
algorithms were demonstrated through a series of numerical
) experiments. Finally, it is mentioned that the algorithms pro-
expansmnf freqlllnfe'ncy W‘ZS taken toh!ﬁ@ :dl'?t G'E 'tcont-' posed in this paper can also be used in conjunction with
vergence for all five modes was achieved after iterations, o _order finite-element approximations
The total CPU time was 73 s. The calculated eigenfrequen-g PP '
cies are shown in Table Ill. Their convergence is depicted
in the bottom plot of Fig. 2. In order to examine the depen- REEERENCES
dence of the convergence behavior of the algorithm as the 1 LEL 4R Mitra. “A ot " ication of edae-cl .
H . . F. Lee an . Mittra, note on the application of eage-elements
éxpansion frequency point Changes’ the same prOblem Wag- for modeling three-dimensional inhomogeneously-filled cavititsEE

solved _by S?ttingfo = 1.0 GHz. This time, the_number Trans. Microwave Theory Teghvol. 40, pp. 1767-1773, Sept. 1992.
of required iterations for convergence of the five lowest [2] D. Schmitt and T. Weiland, “2D and 3D computations of eigenvalue
eigenfrequencies was 16. However, the same eigenfrequen- Problems’IEEE Trans. Magn.vol. 28, pp. 1793-1796, Mar. 1992.
. . 3] S. Prepelitsa, R. Dyczij-Edlinger, and J. F. Lee, “Finite-element analysis
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and B are discretized) is avoided by taking advantage of a
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